Предмет: Математика, автор: voodoomeggy

Найдите периметр прямоугольного треугольника, если его гипотенуза равна 20 см, а радиус вписанной окружности 4 см.
Пожалуйста с рисунком, и полным объяснением

Ответы

Автор ответа: olegandrejcenko846
0

Ответ:

Периметр прямоугольного треугольника ABC равен 50 сантиметров

Пошаговое объяснение:

Дан прямоугольный треугольник (смотри фотографию). Назовем его ABC. По условию задачи гипотенуза прямоугольного треугольника (сторона BC) равна 20см, а радиус вписанной окружности равен 4см. Нам нужно найти периметр прямоугольного треугольника ABC. Периметром прямоугольного треугольника мы назовем сумму длин его сторон, тоесть сумму длин его катетов и гипотенузы. Полупериметр прямоугольного треугольника мы найдем по формуле:

p =  \frac{a + b + c}{2}

где a и b катеты прямоугольного треугольника ABC

c-гипотенуза прямоугольного треугольника ABC

Периметр прямоугольного треугольника равен двум его полупериметрам, тоесть

P=2p

Найдем площадь прямоугольного треугольника ABC по формуле: (1)

s =  \frac{1}{4} c {}^{2}  \times  \sin( \alpha )

где угол alpha равен 90° а это прямой угол ABC. Найдем синус прямого угла alpha:

 \sin( \alpha )  =   \sin(90)  =  \\  =  \sin( \frac{\pi}{2} )  = 1

Подставим значения синуса прямого угла alpha и значения длины гипотенузы прямоугольного треугольника в формулу (1) Имеем:

s =  \frac{1}{4} c {}^{2}  \times  \sin( \alpha )

где с-гипотенуза прямоугольного треугольника

угол alpha равен 90° а это угол ABC

s =  \frac{1}{4} c {}^{2}  \times  \sin( \alpha )  =  \\  =  \frac{1}{4} 20 {}^{2}  \times 1 =  \\  =  \frac{400}{4}  = 100

Мы нашли площадь прямоугольного треугольника ABC и она равна 100см^2

Найдем периметр прямоугольного треугольника ABC. Нам известно, что в любой прямоугольный треугольник можно вписать окружность, радиус которой найдем по формуле. (2)

r =  \frac{s}{p}

где s-площадь прямоугольного треугольника ABC и она равна 100см^2

p-полупертметр прямоугольного треугольника ABC

r-радиус вписанной окружности в прямоугольный треугольник ABC и он равен 4см. Отсюда полупериметр прямоугольного треугольника ABC равен: (3)

p =  \frac{s}{r}

Подставим значения площади (s=100см^2) прямоугольного треугольника ABC и радиуса вписанной окружности (r=4см) в формулу (3). Имеем:

p =  \frac{s}{r}  =  \frac{100}{4}  = 25

Мы нашли полупериметр прямоугольного треугольника ABC и он равен 25см.

Нам известно, что периметр равен двум полупериметрам

Поэтому периметр прямоугольного треугольника равен:

p = 2p = 2 \times 25 = 50

Мы нашли периметр прямоугольного треугольника ABC и он равен 50см

Ответ: Периметр прямоугольного треугольника ABC равен 50 сантиметров.

Приложения:

voodoomeggy: Спасибо)
Похожие вопросы
Предмет: Алгебра, автор: Hopergo
Предмет: Геометрия, автор: zwziq9
Предмет: Право, автор: mariakovalzyk1989