Предмет: Алгебра, автор: Reideen

Задание приложено...

Приложения:

Ответы

Автор ответа: mathkot
2

Ответ:

36.

а)

\displaystyle \left \{ {{x + y = 1} \atop {x - y = 2}} \right.

\Delta = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 \cdot 1 - 1 \cdot 1 =-2

\Delta_{x} =  \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -1 \cdot 1 - 1 \cdot 2 =-3

\Delta_{y} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 1 = 1

x = \dfrac{\Delta_{x} }{\Delta} = \dfrac{-3}{-2} = 1,5

y = \dfrac{\Delta_{y} }{\Delta} = \dfrac{1}{-2} = -0,5

б)

\left \{\begin{array}{l} x -3y + z= 2 \\ 2x + y + 3z = 3 \\ 2x - y - 2z = 8 \end{array} \right

\Delta = \begin{vmatrix} 1 & -3 & 1 \\ 2 & 1 & 3 \\ 2 & -1 & -2  \end{vmatrix} r_{3} + r_{2} = \begin{vmatrix} 1 & -3 & 1 \\ 2 & 1 & 3 \\ 4 & 0 & 1  \end{vmatrix} c_{1} - 4c_{3} =

=  \begin{vmatrix} 1 - 4 \cdot 1& -3 & 1 \\ 2 - 4 \cdot3 & 1 & 3 \\ 4 - 4 \cdot1 & 0 & 1  \end{vmatrix}  =  \begin{vmatrix}-3& -3 & 1 \\ -10 & 1 & 3 \\ 0 & 0 & 1  \end{vmatrix} = 1 \cdot (-1)^{3 + 3} \begin{vmatrix} -3 & -3 \\ -10 & 1 \end{vmatrix}  =

= -3 \cdot 1 - (-3) \cdot (-10)  = -33

\Delta_{x} = \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ 8 & -1 & -2  \end{vmatrix}r_{3} + r_{2} =  \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ 8 + 3 & -1 + 1 & -2 + 3  \end{vmatrix} =   \begin{vmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ 11 & 0 & 1  \end{vmatrix} c_{1} - 11c_{3}

= \begin{vmatrix} 2 - 11 \cdot 1 & -3 & 1 \\ 3 - 11 \cdot3 & 1  & 3 \\ 11- 11 \cdot1 & 0 & 1  \end{vmatrix} =  \begin{vmatrix} -9 & -3 & 1 \\ -30 & 1  & 3 \\ 0 & 0 & 1  \end{vmatrix} = 1 \cdot (-1)^{3 + 3} \begin{vmatrix} -9 & -3 \\ -30 & 1 \end{vmatrix}  =

= -9 \cdot 1 - (-3) \cdot (-30)  = -99

\Delta_{y} = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 2 & 8 & -2  \end{vmatrix} c_{3} -c_{1} = \begin{vmatrix} 1 & 2 & 1 - 1 \\ 2 & 3  & 3 - 2 \\ 2 & 8 & -2 -2  \end{vmatrix} =  \begin{vmatrix} 1 & 2 & 0 \\ 2 & 3  & 1 \\ 2 & 8 & -4  \end{vmatrix}c_{2} - 2c_{1} =

= \begin{vmatrix} 1 & 2 - 2 \cdot 1 & 0 \\ 2 & 3  - 2 \cdot 2 & 1 \\ 2 & 8 - 2 \cdot2 & -4  \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & 1 \\ 2 & 4& -4  \end{vmatrix} = 1 \cdot (-1)^{1 + 1} \begin{vmatrix} -1 & 1 \\ 4 & -4 \end{vmatrix} =

= (-1) \cdot (-4) - 1 \cdot 4 =0

\Delta_{z} = \begin{vmatrix} 1 & -3 & 2 \\ 2 & 1 & 3 \\ 2 & -1 & 8  \end{vmatrix}r_{3} - r_{2};r_{2} - 2r_{1} = \begin{vmatrix} 1 & -3 & 2 \\ 2 - 2 \cdot 1 & 1 - 2 \cdot(-3) & 3 - 2 \cdot2\\ 2 - 2 & -1 - 1 & 8 -3\end{vmatrix} =

= \begin{vmatrix} 1 & -3 & 2 \\ 0 & 7 & -1 \\ 0 & -2 & 5\end{vmatrix} = 1 \cdot (-1)^{1 + 1} \begin{vmatrix} 7 & -1 \\ -2 & 5 \end{vmatrix} =   7 \cdot 5 -  (-2) \cdot (-1) = 33

x = \dfrac{\Delta_{x} }{\Delta} = \dfrac{-99}{-33} = 3

y = \dfrac{\Delta_{y} }{\Delta} = \dfrac{0}{-33} = 0

z = \dfrac{\Delta_{z} }{\Delta} = \dfrac{33}{-33} = -1

в)

\left \{\begin{array}{l} 3x + y + 2z = -4 \\ x - 2y - z = -1 \\ 2x + 3y + 2z = 0 \end{array} \right

\Delta = \begin{vmatrix} 3 & 1 & 2 \\ 1 & -2 & -1 \\ 2 & 3 & 2  \end{vmatrix} r_{1} - 3r_{2};r_{3} - 2r_{2} =  \begin{vmatrix} 3 - 3 \cdot 1 & 1  - 3 \cdot(-2) & 2  - 3 \cdot(-1) \\ 1 & -2 & -1 \\ 2 - 2 \cdot 1 & 3 - 2 \cdot(-2) & 2 - 2 \cdot(-1)  \end{vmatrix} =

=  \begin{vmatrix} 0 & 7 & 5 \\ 1 & -2 & -1 \\ 0 & 7 & 4  \end{vmatrix} = 1 \cdot (-1)^{2 + 1} \begin{vmatrix} 7 & 5 \\ 7 & 4 \end{vmatrix} =  -(7 \cdot 4 - 7 \cdot 5) = 7

\Delta_{x} = \begin{vmatrix} -4 & 1 & 2 \\ -1 & -2 & -1 \\ 0 & 3 & 2  \end{vmatrix} =  -\begin{vmatrix} -4 & 1 & 2 \\ 1 & 2 & 1 \\ 0 & 3 & 2  \end{vmatrix}r_{1} + 4r_{2} =   -\begin{vmatrix} -4 + 4 \cdot 1 & 1 + 4 \cdot2 & 2 + 4 \cdot1 \\ 1 & 2 & 1 \\ 0 & 3 & 2  \end{vmatrix}=

= -\begin{vmatrix} 0 & 9 & 6 \\ 1 & 2 & 1 \\ 0 & 3 & 2  \end{vmatrix}= -1 \cdot 1 \cdot (-1)^{2 + 1} \begin{vmatrix} 9 & 6 \\ 3 & 2 \end{vmatrix} =  9 \cdot 2 - 6 \cdot 3 =0

\Delta_{y} = \begin{vmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 2 & 0 & 2  \end{vmatrix} c_{3} - c_{1} = \begin{vmatrix} 3 & -4 & 2 - 3 \\ 1 & -1 & -1 - 1 \\ 2 & 0 & 2 - 2 \end{vmatrix} = \begin{vmatrix} 3 & -4 & -1 \\ 1 & -1 & -2 \\ 2 & 0 & 0 \end{vmatrix} =

= 2 \cdot (-1)^{3 + 1} \begin{vmatrix} -4 & -1 \\ -1 & -2 \end{vmatrix} = 2(4 \cdot 2 - 1 \cdot 1)  = 14

\Delta_{z} = \begin{vmatrix} 3 & 1 & -4 \\ 1 & -2 & -1 \\ 2 & 3 & 0  \end{vmatrix} = -\begin{vmatrix} 3 & 1 & 4 \\ 1 & -2 & 1 \\ 2 & 3 & 0  \end{vmatrix}r_{1} - 4r_{2}=

= -\begin{vmatrix} 3 - 4 \cdot 1 & 1 - 4 \cdot (-2) & 4 - 4 \cdot 1\\ 1 & -2 & 1 \\ 2 & 3 & 0  \end{vmatrix} =  -\begin{vmatrix} -1& 9 & 0\\ 1 & -2 & 1 \\ 2 & 3 & 0  \end{vmatrix} =

= -1 \cdot 1 \cdot (-1)^{2 + 3} \begin{vmatrix} -1 & 9 \\ 2 & 3 \end{vmatrix} =  -1 \cdot 3 - 2 \cdot 9 =-21

x = \dfrac{\Delta_{x} }{\Delta} = \dfrac{0}{7} = 0

y = \dfrac{\Delta_{y} }{\Delta} = \dfrac{14}{7} =2

z = \dfrac{\Delta_{z} }{\Delta} = \dfrac{-21}{7} = -3

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: 11Аполинария11