Предмет: Геометрия, автор: Человеквеквеквеквее

Найдите площадь выпуклого четырехугольника с равными диагоналями, если отрезки, соединяющие середины его противоположных сторон, равны 14 и 8.

Ответы

Автор ответа: siestarjoki
2

Соединим середины сторон четырехугольника.

Полученные отрезки параллельны диагоналям и равны их половинам, так как являются средними линиями в соответствующих треугольниках.

Отрезки образуют параллелограмм Вариньона.

Площадь четырехугольника Sч =1/2 d₁d₂ sinф

Угол ф между диагоналями четырехугольника равен углу между сторонами пар-ма Вариньона (т.к. они параллельны).

Площадь пар-ма Вариньона Sв =d₁/2 *d₂/2 *sinф =1/2 Sч

Итак, площадь пар-ма Вариньона равна половине площади четырехугольника.

В данном четырехугольнике диагонали равны, следовательно стороны пар-ма Вариньона равны и он является ромбом.

Диагонали ромба перпендикулярны, sin90=1.

Sч =2 Sв =2 *1/2 *14*8 =112

Приложения:
Похожие вопросы
Предмет: Алгебра, автор: Darinka19991
Предмет: Алгебра, автор: Darinka19991
Предмет: Математика, автор: Tralty