на окружности отмечено 8 точек среди которых есть точка А. Сколько треугольников с вершинами в этих точках можно построить? Сколько среди них треугольников с вершиной А?
Ответы
Ответ:
56 28
Пошаговое объяснение:
Решение: Выберем две точки, проведем одну сторону, всего треугольников можно построить 6 (две точки использовано, третья может одной из 6 оставшихся),
всего можно провести различных отрезков 8*7\2=28 отрезков соединив две точки (8 точек, каждую из них можно соединить с одной из 7 точек, при этом каждый отрезок считается два раза, так у него два конца - вершины)
Тогда всех треугольников 28*6\3=56 треугольников (не хватает третьей вершины, ее можно выбрать из одной из оставшихся 6 вершин, делим на 3 потому что каждый треугольник посчитали по три раза по количеству его вершин)
Итого ответ 56 треугольников
Решение: Выберем две точки , одна из которых А проведем одну сторону, всего треугольников можно построить 6 (две точки использовано, третья может одной из 6 оставшихся),
всего можно провести различных отрезков 8*7\2=28 отрезков соединив две точки (8 точек, каждую из них можно соединить с одной из 7 точек, при этом каждый отрезок считается два раза, так у него два конца - вершины)
Итого ответ 28 треугольников одна из вершин которого А