Сколькими способами можно разложить на множители квадратный трёхчлен
Ответы
Сколькими способами можно разложить на множители квадратный трёхчлен его можно разложить одним способом Каждый квадратный трехчлен ax 2 + bx+ c может быть разложен на множители первой степени следующим образом.
Решим квадратное уравнение:
ax 2 + bx+ c = 0 .
Если x1 и x2 - корни этого уравнения, то
ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это, пожалуйста! ) .
П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени.
Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3
Если квадратный трехчлен
ax^2 + bx + c = 0
имеет два разных корня x1 и x2, то он раскладывается так:
a(x - x1)(x - x2) = 0
Для нахождения корней можно использовать теорему Виета:
{ x1 + x2 = -b/a
{ x1*x2 = c/a
А можно решить уравнение через дискриминант:
D = b^2 - 4ac > 0
x1 = (-b - V(D))/(2a); x2 = (-b + V(D))/(2a)
(Здесь V это знак квадратного корня).
Или, если b четное:
D/4 = (b/2)^2 - ac
x1 = (-b/2 - V(D/4))/a; x2 = (-b/2 + V(D/4))/a
Если квадратный трехчлен имеет один корень (точнее, два равных корня) x1 = x2, то он раскладывается так:
a(x - x1)^2 = 0
Находят корень точно также, но в этом случае D = 0.
Если же трехчлен действительных корней не имеет, то он не раскладывается на множители.
Это будет, если D < 0.