Предмет: Математика,
автор: vlados400125
Даны две линейные функции f(x) и g(x) такие, что
графики y = f(x) и y = g(x) – параллельные прямые, не параллельные осям координат. Известно, что график функции y = (f(x))^2 касается гра-
фика y = −12g(x). Найдите все такие значения , что график функции y = (g(x))^2 касается графика y = Af(x).
Матов:
Все значения A?
Ответы
Автор ответа:
2
Положим что
f(x)=ax+b
g(x)=ax+c
Так как параллельные и b,,c,a не равны 0 так как не параллельны осям
y=(ax+b)^2=a^2x^2+2axb+b^2
y=-12ax-12c
Приравнивая
a^2x^2+x(2ab+12a)+b^2+12c=0
D=(2ab+12a)^2-4a^2*(b^2+12c)=0
Откуда c=b+3
То есть
f(x)=ax+b, g(x)=ax+b+3
По условию
(a*x+b+3)^2=A(ax+b)
a^2*x^2+x(2ab+6a-A*a)+b^2+6b+9-A*b=0
D = (2ab+6a-A*a)^2-4a^2*((b+3)^2-A*b) = a^2(A-12)A = 0
A=12, A=0
Похожие вопросы
Предмет: Русский язык,
автор: marinaxxx2222
Предмет: География,
автор: mimishkakit
Предмет: Литература,
автор: alla228fairy
Предмет: История,
автор: mariechan20161