Предмет: Геометрия, автор: Кэп1Катюха1

Высота основания правильной треугольной пирамиды равна 6см, а угол между боковым ребром и основанием пирамиды равен 30 градусов.Найдите площадь полной поверхности и объём пирамиды.

Ответы

Автор ответа: witch3214
0

Так... Заранее извиняюсь, если что-то будет повторяться и смешиваться. Печатаю и решаю одновременно просто... Предположим что у тебя пирамида КАВС(К - вершина). Раз она правильная то все боковые треугольники равнобедренные, а в основании равносторонний. Рассматриваешь треугольник  КОА(О - центр основания). Он прямоугольный. tg30=KO/AO, следовательно АО=КО/tg30. В основании лежит равносторонний треугольник. О - точка пересечения медиан, высот и биссектрисс(в принципе это одни и те же линии). Делятся они в отношении 2 к 1 считая от вершины(тоесть наше АО это 2 части медианы, в целом она же будет равна АО*3/2). Далее из треугольника АМВ находим АВ(М - середина ВС). АВ=АМ/sin60 (в основании равносторонний значит все углы по 60). Далее находим площадь основания, она равна половине основания умноженого на высоту (1/2*АМ*АВ). Объем равен одной трети произведения площади основания на высоту (1/3*площадь основания*ОК). Теперь будем искать площадь!) Площадь основания мы уже нашли. Теперь ищем площадь боковой поверхности(там три одинаковых треугольника, поэтому найдем площадь одного и умножим на три). Тоже будем искать через формулу площади треугольника - половина онования на высоту. АВ мы уже нашли, ищем высоту. Через треугольник КОА ищем боковую сторону(АК=КО/sin30). По теореме пифагора найдем МК. МК=корень(АК^2-АМ^2). АМ=1/2*АВ. Ну дальше боковая площадь равна 3*1/2*АВ*КМ. И вся площадь поверхности равна этой площади + площадь основания. Должно быть правильно, но по ходу решения лучше перепроверяй.

Похожие вопросы