Предмет: Геометрия,
автор: Irina222255
Докажите, что четырехугольник АВСD - параллелограмм, если А(2;1;2), В(1;0;6), С(-2;1;4), D(-1;2;0).
Ответы
Автор ответа:
0
Вектор АВ=(1-2;0-1;6-2)=(-1;-1;4).
Вектор DC=(-2-(-1);1-2;4-0)=(-1;-1;4)
Вектора АВ и DC равны, значит они лежат на параллельных прямых.
Аналогично видим, что вектор ВС=(-2-1;1-0;4-6)=(-3;1;-2) равен вектору AD=(-1-2;2-1;0-2)=(-3;1;-2). Значит и эти вектора лежат на параллельных прямых.
По теореме о том, что если выпуклый четырехугольник имеет противоположные параллельные стороны, то он параллелограмм, получаем, что АВСD - параллелограмм.
Вектор DC=(-2-(-1);1-2;4-0)=(-1;-1;4)
Вектора АВ и DC равны, значит они лежат на параллельных прямых.
Аналогично видим, что вектор ВС=(-2-1;1-0;4-6)=(-3;1;-2) равен вектору AD=(-1-2;2-1;0-2)=(-3;1;-2). Значит и эти вектора лежат на параллельных прямых.
По теореме о том, что если выпуклый четырехугольник имеет противоположные параллельные стороны, то он параллелограмм, получаем, что АВСD - параллелограмм.
Автор ответа:
0
Спасибо огромное!
Автор ответа:
0
На здоровье ))
Похожие вопросы
Предмет: Алгебра,
автор: aidana0065
Предмет: Литература,
автор: 25yuliakuybida12
Предмет: Қазақ тiлi,
автор: dannaospanova05
Предмет: Химия,
автор: Сано5000
Предмет: Алгебра,
автор: деля