Предмет: Геометрия, автор: Iluy2502

Высота правильной десятиугольной пирамиды равна 8, а сторона основания равна 12 tg 18 градусов. Найдите расстояние от центра основания пирамиды до боковой грани.

Приложения:

Ответы

Автор ответа: dnepr1
0
Расстояние от центра основания пирамиды до боковой грани - это перпендикуляр к апофеме боковой грани.
Рассмотрим треугольник. образованный перпендикулярным сечением к боковой грани, проходящим через ось пирамиды.
Основание его это перпендикуляр из центра основания к его стороне.
Сторона а из центра видна под углом 360 / 10 = 36
°.
Длина отрезка от центра до стороны равна:
 (а/2)/tg 18° = (12/2)*tg 18°/tg 18° = 6.
Апофема равна А = √(6²+8²) = √(36+64)= √100 = 10.
Тогда расстояние от центра основания пирамиды до боковой грани как перпендикуляр к гипотенузе равно .2S/A = 2*(1/2)*6*8 / 10 = 4,8.

Автор ответа: Iluy2502
0
Спасибо)
Похожие вопросы
Предмет: Математика, автор: Аноним