Предмет: Алгебра,
автор: Kasper11234
Найдите абсциссы точек графика функции y=1/2cos2x-x в которых касательные к этому графику параллельны оси абсцисс или совпадают с ней
Ответы
Автор ответа:
0
Possible derivation:
d/dx(y) = d/dx(1/2 cos(2 x)-x)
The derivative of y is zero:
0 = d/dx(-x+1/2 cos(2 x))
Differentiate the sum term by term and factor out constants:
0 = (d/dx(cos(2 x)))/2-d/dx(x)
The derivative of x is 1:
0 = 1/2 (d/dx(cos(2 x)))-1
Using the chain rule, d/dx(cos(2 x)) = ( dcos(u))/( du) ( du)/( dx), where u = 2 x and ( d)/( du)(cos(u)) = -sin(u):
0 = -1+1/2-d/dx(2 x) sin(2 x)
Factor out constants:
0 = -1-1/2 sin(2 x) 2 d/dx(x)
Simplify the expression:
0 = -1-(d/dx(x)) sin(2 x)
The derivative of x is 1:
Answer: |
| 0 = -1-1 sin(2 x)
d/dx(y) = d/dx(1/2 cos(2 x)-x)
The derivative of y is zero:
0 = d/dx(-x+1/2 cos(2 x))
Differentiate the sum term by term and factor out constants:
0 = (d/dx(cos(2 x)))/2-d/dx(x)
The derivative of x is 1:
0 = 1/2 (d/dx(cos(2 x)))-1
Using the chain rule, d/dx(cos(2 x)) = ( dcos(u))/( du) ( du)/( dx), where u = 2 x and ( d)/( du)(cos(u)) = -sin(u):
0 = -1+1/2-d/dx(2 x) sin(2 x)
Factor out constants:
0 = -1-1/2 sin(2 x) 2 d/dx(x)
Simplify the expression:
0 = -1-(d/dx(x)) sin(2 x)
The derivative of x is 1:
Answer: |
| 0 = -1-1 sin(2 x)
Автор ответа:
0
11
Автор ответа:
0
что за d/dx
Похожие вопросы
Предмет: Окружающий мир,
автор: anastasiaberdinskaa0
Предмет: Физика,
автор: Аноним
Предмет: Английский язык,
автор: kasimbaevaasem
Предмет: Математика,
автор: CoLoBeu