Предмет: Геометрия,
автор: artalex74
Площадь ромба равна 45. Высота меньше стороны на 4. Найдите диагонали ромба.
Ответы
Автор ответа:
0
s=ah т.к. ромб это обычный параллелограмм с равными сторонами
сторона равна 9, а высота 5. х*(x+4)=45 x=5 это высота
sin острого угла = 5/9 cos этого же угла равен 2sqrt(14)/9 тогда по теореме косинусов d^2=81+81-2*9*9*2sqrt(14)/9
d^2=162-36sqrt(14)
D=sqrt(4*81-(162-36sqrt(14))=sqrt(324-162+36sqrt(14))=sqrt(162+36sqrt(14))
единственное, что меня смущает это корень под корнем, все ли данные задачи верны и нет ли там угла?
сторона равна 9, а высота 5. х*(x+4)=45 x=5 это высота
sin острого угла = 5/9 cos этого же угла равен 2sqrt(14)/9 тогда по теореме косинусов d^2=81+81-2*9*9*2sqrt(14)/9
d^2=162-36sqrt(14)
D=sqrt(4*81-(162-36sqrt(14))=sqrt(324-162+36sqrt(14))=sqrt(162+36sqrt(14))
единственное, что меня смущает это корень под корнем, все ли данные задачи верны и нет ли там угла?
Похожие вопросы
Предмет: Физика,
автор: Аноним
Предмет: Математика,
автор: karinaserrstneva
Предмет: Литература,
автор: slavancross
Предмет: Физика,
автор: Аноним