Предмет: Геометрия,
автор: masha993
Одна из диагоналей параллелограмма, равная 9√6/2, составляет с основанием угол в 60 градусов. Найти длину второй диагонали , если она составляет с тем же основанием угол в 45 градусов.·
Ответы
Автор ответа:
0
Точка пересечения диагоналей параллелограмма делит их пополам. Значит половина данной нам диагонали равна 9√6/4. Проведем перпендикуляр из точки пересечения диагоналей к основанию. Получили два прямоугольных треугольника, в одном из которых находим величину катета - перпендикуляра к основанию, который равен половине данной нам диагонали (9√6/4), умноженной на sin60° = √3/2, то есть 27√2/8. Второй прямоугольный треугольник равносторонний, с катетами, равными
27√2/8. По Пифагору находим гипотенузу: √(2*(27√2/8)²) = 27/4. Но это - половина искомой диагонали.
Значит искомая диагональ равна 27/2 =13,5.
27√2/8. По Пифагору находим гипотенузу: √(2*(27√2/8)²) = 27/4. Но это - половина искомой диагонали.
Значит искомая диагональ равна 27/2 =13,5.
Приложения:
Похожие вопросы
Предмет: Обществознание,
автор: gorgame133
Предмет: Математика,
автор: aliaauespaeva
Предмет: Математика,
автор: turdufakoovaaidana
Предмет: Физика,
автор: marchenko24
Предмет: Алгебра,
автор: sashapetin80