Предмет: Математика, автор: DAUD2000

Докажите, что не существует натуральных x и y таких, что x^3+y^3=7*8^k

Ответы

Автор ответа: mathgenius
0
Разложим:
(x+y)(x^2-xy+y^2)=7*8^k
(x+y)((x+y)^2-3xy)=7*8^k
для удобства заменим:
x+y=a
xy=b
a(a^2-3b)=7*8^k
Число 7*8^k можно представить в виде произведения 2 множителей только так 7*2^n *2^m
Откуда:
a=7*2^n
a^2-3b=2^m
a^2=49*2^2n
Вычетая почленно получим: 3b=49*2^2n-2^m но тогда число 3b является четным,а тогда число b четное. Тк b=xy то в любом случае хотя бы 1 из чисел x и у четное,тк произведение 2 нечетных чисел всегда нечетно.
Тк из условия x^3+y^3 четное число ,то раз одно из чисел x и y четное,то каждый из слагаемых четный,тк сумма четного и нечетного числа -число не четное. пользуясь этим запишем:
(2x1)^3+(2y1)^3=7*8^k
x1^3+y1^3=7*8^k-1,далее пользуясь этим рассуждением заново можно доказать что оба новых числа четные и тд пока не сократятся все степени 8 !!!!! И так подделав k итераций получим что:xk^3+yk^3=7 но такое невозможно,тк возможны разложения: 6+1 5+2 3+4 ,то есть невозможно представить в виде суммы кубов.
А значит мы пришли к противоречию утверждение доказано!!!!!!
Автор ответа: Аноним
0
Молодец)
Автор ответа: mathgenius
0
Cпасибо
Похожие вопросы
Предмет: Математика, автор: azizsabyrbek741
Предмет: Алгебра, автор: ABC1234567