Предмет: Геометрия,
автор: Школьник1456
В треугольнике ABC AB=BC=75,AC=120.Найдите длину медианы BM
Ответы
Автор ответа:
0
Если две стороны (АВ и ВС) = по 75, то треугольник равнобедренный.
В равнобедренном треугольнике медиана ВМ является и высотой, и биссектрисой.
Следвательно, ВМ - высота, которая разделила треугольник АВС на два
прямоугольных треугольника АМВ и ВМС, АМ = МС = 120 : 2 = 60
Рассмотрим треугольник ВМС.
ВМ^2 = ВС^2 - MC^2 (по теореме Пифагора)
BM^2 = 75^2 - 60^2 = 5625 - 3600 = 2025
BM = 45
Ответ: ВМ = 45
В равнобедренном треугольнике медиана ВМ является и высотой, и биссектрисой.
Следвательно, ВМ - высота, которая разделила треугольник АВС на два
прямоугольных треугольника АМВ и ВМС, АМ = МС = 120 : 2 = 60
Рассмотрим треугольник ВМС.
ВМ^2 = ВС^2 - MC^2 (по теореме Пифагора)
BM^2 = 75^2 - 60^2 = 5625 - 3600 = 2025
BM = 45
Ответ: ВМ = 45
Похожие вопросы
Предмет: Немецкий язык,
автор: 2parvina6
Предмет: Химия,
автор: cblp0k
Предмет: Алгебра,
автор: matryonib
Предмет: Математика,
автор: barkovskayanas
Предмет: Математика,
автор: pivtzovaolga