Предмет: Геометрия,
автор: ученица0
Равнобедренный треугольник с высотой, проведенной к основанию и равной 16 см, вписан в окружность радиуса 10 см. Найдите площадь этого треугольника.Рисунок пожалуйста
Ответы
Автор ответа:
0
С рисунком помочь не могу, а вот решение:
АВ, ВС - боковые стороны, АС - основание, ВО - высота
S треугольника АВС = (16·АС)/2.
По другой формуле S треугольника АВС = (АВ·ВС·АС)/4R. Не забывая, что АВ=ВС, приравниваем эти формулы и получаем: 8АС=(АВ²·АС)/40. Отсюда 320=АВ², АВ=8√5. По теореме Пифагора в треугольнике АВО АО=√АВ²-ВО²=√320-256=√64=8. Следовательно, АС=2·8=16, S=(16·16)/2=128
АВ, ВС - боковые стороны, АС - основание, ВО - высота
S треугольника АВС = (16·АС)/2.
По другой формуле S треугольника АВС = (АВ·ВС·АС)/4R. Не забывая, что АВ=ВС, приравниваем эти формулы и получаем: 8АС=(АВ²·АС)/40. Отсюда 320=АВ², АВ=8√5. По теореме Пифагора в треугольнике АВО АО=√АВ²-ВО²=√320-256=√64=8. Следовательно, АС=2·8=16, S=(16·16)/2=128
Похожие вопросы
Предмет: Геометрия,
автор: sasadidyk
Предмет: Биология,
автор: aleksandraletko
Предмет: Обществознание,
автор: mishamarkov9090
Предмет: Химия,
автор: виKа913