Предмет: Геометрия, автор: clncln

В равнбедренном треугольнике точка Е -середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите отношение, в котором прямая ВЕ делит отрезок АК.

Ответы

Автор ответа: Lora121
0

Пусть дан равнобедренный треугольник АВС, АВ=ВС - боковые стороны, АС - основание, ВЕ - высота, биссектриса, медиана треугольника, АК делит сторону ВС в отношении 2:5, считая от вершины С, т.е. СК:КВ=2:5. Пусть ВЕ пересекается с АК в точке О.

Биссектриса треугольника обладает следующим свойством: биссектриса делит противолежащую сторону треугольника на отрезки пропорциональные двум другим сторонам.

ВЕ - биссектриса треугольника АВС и соответственно ВО - биссектриса треугольника АВК.

Пусть х - коэффициент пропорциональности, то СК=2х, КВ=5х, то ВС=АВ=7х. Значит ВО делит сторону АК в отношении 7:5 считая отвершины А, т.е. АО:ОК=7:5

Автор ответа: Викушка95
0

В тр-ке АВК биссектриса ВМ (она же ВЕ) угла АВК делит противоположную сторону АК на отрезки пропорциональные сторонам треугольника.

АВ = ВС,  AB/BK=7/5, значит и  АМ:МK = 7:5

Похожие вопросы
Предмет: Қазақ тiлi, автор: kurmetcametaev