привет всем! Помогите найти ошибку:
Нужно доказать , что если в четырехугольнике две противоположные стороны равны и два противоположных угла равны, то такой четырёхугольник - параллелограмм.
Ответы
Проведём высоты ДЕ и ВР.
Рассмотрим прямоугольные треугольники АЕД и СРВ.
ΔАЕД = ΔСРВ по гипотенузе (АД = ВС по условию) и острому углу (∠1 = ∠2 по условию). Тогда и другие стороны этих тр-ков равны, а именно: ДЕ = ВР и СР = АЕ.
Диагональ ВД проведена. Рассмотрим прямоугольные тр-ки ДВЕ и ВРД.
ΔДВЕ = ΔВРД по гипотенузе (ВД - общая сторона) и катету (только что доказали, что ДЕ = ВР). Тогда и другие катеты равны между собой: ВЕ = ДР.
Поскольку СР = АЕ и ВЕ = ДР, то
АЕ + ВЕ = ДР + СР
или
АВ = ДС
Итак мы доказали, что в четырёхугольнике АВСД противоположные стороны попарно равны: АД = ВС (по условию) АВ = СД (по доказанному). Это является признаком параллелограмма.
Следовательно, четырёхугольник АВСД - параллелограмм