Предмет: Алгебра,
автор: dark34dark34
Помогите решить два номера. Тригонометрия
1) 11sin2x+32sin^2x-12=0
2) 5cosx-10sinx-11=0
Заранее спасибо, и по понятнее пожалуйста , а то я вообще не врублюсь как их решить
Ответы
Автор ответа:
0
1)sin2x=2sinxcosx 1=sin²x+cos²x
11*2sinxcosx +32sin²x-12*(sin²x+cos²x)=0
22sinxcosx+32sin²x-12sin²x-12cos²x=0
20sin²x+22sinxcosx-12cos²x=0 /2cos²x≠0
10tg²x+11tgx-6=0
tgx=a
10a²+11a-6=0
D=121+240=361 √D=19
a1=(-11-19)/20=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
a2=(-11+19)/20=0,4⇒tgx=0,4⇒x=arctg0.8+πn
2)cox=cos²x/2-sin²x/2 sinx=2sinx/2cosx/2
5(cos²x/2-sin²x/2)-10*2sinx/2cosx/2-11*(sin²x/2+cos²x/2)=0
5cos²x/2-5sin²x/2-20sinx/2cosx/2-11sin²x/2-11cos²x/2=0
-16sin²x/2-20sinx/2cosx/2-6cos²x/2=0 /-2cos²x/2
8tg²x/2+10tgx/2+3=0
tgx/2=a
8a²+10a+3=0
D=100-96=4
a1=(-10-2)/16=-12/16=-3/4⇒tgx=-3/4⇒x=-arctg0,75+πn
a2=(-10+2)/16=-1/2⇒tgx=-1/2⇒x=-arctg0,5+πn
11*2sinxcosx +32sin²x-12*(sin²x+cos²x)=0
22sinxcosx+32sin²x-12sin²x-12cos²x=0
20sin²x+22sinxcosx-12cos²x=0 /2cos²x≠0
10tg²x+11tgx-6=0
tgx=a
10a²+11a-6=0
D=121+240=361 √D=19
a1=(-11-19)/20=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
a2=(-11+19)/20=0,4⇒tgx=0,4⇒x=arctg0.8+πn
2)cox=cos²x/2-sin²x/2 sinx=2sinx/2cosx/2
5(cos²x/2-sin²x/2)-10*2sinx/2cosx/2-11*(sin²x/2+cos²x/2)=0
5cos²x/2-5sin²x/2-20sinx/2cosx/2-11sin²x/2-11cos²x/2=0
-16sin²x/2-20sinx/2cosx/2-6cos²x/2=0 /-2cos²x/2
8tg²x/2+10tgx/2+3=0
tgx/2=a
8a²+10a+3=0
D=100-96=4
a1=(-10-2)/16=-12/16=-3/4⇒tgx=-3/4⇒x=-arctg0,75+πn
a2=(-10+2)/16=-1/2⇒tgx=-1/2⇒x=-arctg0,5+πn
Похожие вопросы
Предмет: Окружающий мир,
автор: feluatennis31
Предмет: Физика,
автор: eralifx
Предмет: Математика,
автор: villieq
Предмет: География,
автор: Khalilovaamina
Предмет: Физика,
автор: alexandra1147