Предмет: Геометрия,
автор: lileya1
Как выразить площадь прямоугольного треугольника.через высоту и биссектрису,проведенные из вершины прямого угла
Ответы
Автор ответа:
0
Обозначим вершины треугольника: А, В, С, основание высоты из вершины В прямого угла - М, точку пересечения биссектрисой гипотенузы - К.
Тогда ВМ / ВК = cos МВК. Угол МВК = arc cos (ВМ / ВК).
Угол СВК = КВА = 45°, так как ВК - биссектриса прямого угла.
Угол СВМ = 45 - (arc cos (ВМ / ВК)),
а угол МВА =45 + (arc cos (ВМ / ВК)).
Отсюда стороны треугольника равны:
ВС = ВМ / cos(45 - (arc cos (ВМ / ВК))).
BA = BM / cos(45 + (arc cos (ВМ / ВК)).
Гипотенузу АС находим по Пифагору: СА = √(ВС²+ВА²), тогда площадь треугольника АВС = (1/2)*АС*ВМ.
Тогда ВМ / ВК = cos МВК. Угол МВК = arc cos (ВМ / ВК).
Угол СВК = КВА = 45°, так как ВК - биссектриса прямого угла.
Угол СВМ = 45 - (arc cos (ВМ / ВК)),
а угол МВА =45 + (arc cos (ВМ / ВК)).
Отсюда стороны треугольника равны:
ВС = ВМ / cos(45 - (arc cos (ВМ / ВК))).
BA = BM / cos(45 + (arc cos (ВМ / ВК)).
Гипотенузу АС находим по Пифагору: СА = √(ВС²+ВА²), тогда площадь треугольника АВС = (1/2)*АС*ВМ.
Похожие вопросы
Предмет: Английский язык,
автор: skgaming3461
Предмет: Русский язык,
автор: fuadmemmedli66
Предмет: Литература,
автор: varyabarmina0
Предмет: Алгебра,
автор: mashaem