Предмет: Математика,
автор: Rdmjkee
1) решить уравнение: sin x + sin (п+x) - cos (п/2 + x) = 1
2) найти sin x, если cos x = 0,6; 0<x<п/2
3) sin (-x)=cos п
Ответы
Автор ответа:
0
√3 sinx-cosx+2cos3x=0
√3 sinx-cosx=-2cos3x
2(√3/2 sinx-1/2*cosx)=-2cos3x
2sin(x-pi/6)=-2cos3x
sin(x-pi/6)=cos(pi-3x)
sin(x-pi/6)=sin(pi/2-(pi-3x))
sin(x-pi/6)=sin(-pi/2+3x)
x-pi/6=-pi/2+3x+2pi*k => -pi/6+pi/2-2pi*k=2x => 2x=2pi/6-2pi*k => x=pi/6-pi*k ("-" роли не играет)
и
x-pi/6=pi-(-pi/2+3x)+2pi*k => x-pi/6=pi+pi/2-3x+2pi*k => 4x=3pi/2+pi/6+2pi*k => 4x=10pi/6+2pi*k => x=5pi/12+pi*k/2
Дополнение #1
Корней счетное множество, но не ограниченное
Автор ответа:
0
1) sinx - sinx+sinx =1, sinx=1, x=п/2 + 2пk
2) sinx=+-sqrt(1-cos^2x) = +-sqrt(1-0,36) = +-sqrt(0,64) = +- 0,8. Так как дан первый коорд. угол, то sinx = +0,8
3) -sinx=-1, sinx=1, x = п/2 + 2пк
Похожие вопросы
Предмет: Геометрия,
автор: averkin07
Предмет: Физика,
автор: Gelya0funny2005
Предмет: Математика,
автор: xorosho10
Предмет: Физика,
автор: arhimeddva
Предмет: Алгебра,
автор: Никитос32