Предмет: Геометрия,
автор: dimos43
какие из следующих утверждений верно ?
1- около любой трапеции можно описать окружность. 2- около любого правильного многоугольника можно описать окружность. 3- центр окружность , вписанной в четырёхугольник , является точка пересечения его диагоналей.
Ответы
Автор ответа:
0
1. Утверждение не верно, так как "четырехугольник можно вписать в окружность тогда и только тогда, когда
сумма его противолежащих углов равна 180º". следовательно, окружность можно описать только около равнобедренной трапеции.
2. Утверждение верно, так как "центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам". В правильном многоугольнике все стороны и углы равны, поэтому все серединные перпендикуляры пересекаются в одной точке.
3. Утверждение не верно, так как центр вписанной в четырехугольник окружности лежит на пересечении его биссектрис.
2. Утверждение верно, так как "центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам". В правильном многоугольнике все стороны и углы равны, поэтому все серединные перпендикуляры пересекаются в одной точке.
3. Утверждение не верно, так как центр вписанной в четырехугольник окружности лежит на пересечении его биссектрис.
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: zhumatova09
Предмет: История,
автор: darimbekaruzhan
Предмет: Химия,
автор: helpme58