Предмет: Геометрия,
автор: mumima
В прямоугольном треугольнике гипотенуза равна 20см, а угол между бисектрисой и медианой, которые проведены из вершины прямого угла равен 15 градусам. Найти катеты треугольника.
Ответы
Автор ответа:
0
Пусть это будет тр-к АВС с прямым углом С. АВ = 20см. Биссетриса СЕ, и медиана СД.
Угол ВСЕ = 45гр., т.к. СЕ - биссектриса. По условию угол ДСЕ = 15гр., тогда угол ВСД = 60гр.
Медиана СД, проведённая из вершины прямого угла С равна половине гипотенузы, т.е. СД = ВД и тр-к ВСД - равнобедренный, углы при основании ВС равны.
угол СВД = угол ВСД = 60гр. Тогда ВС = СД =ВД = 0,5АВ = 0,5·20 = 10(см)
По теореме Пифагора: АС = √(АВ² - ВС²) = √(20² - 10²) = √(400 - 100) = √300 = 10√3(см)
Ответ: катеты тр-ка равны 10см и 10√3см
Похожие вопросы
Предмет: Геометрия,
автор: dmasukov2010
Предмет: Математика,
автор: altynajmaratova669
Предмет: Другие предметы,
автор: Фатиния34
Предмет: Физика,
автор: BadAlsu