Предмет: Алгебра, автор: ExcelLenn29

Ребята срочно нужно!Первый велосипедист выехал из посёлка по шоссе со скоростью 24 км/ч. Через час после него со скоростью 21 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого.

Ответы

Автор ответа: Rechnung
0
Задача решается через систему двух уравнений с двумя переменными.
Пусть скорость третьего велосипедиста равна v км/ч, 
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
                Скорость (км/ч)       Время (ч)            Расстояние (км)
третий           v                           t                       v*t    
второй          21                         t+1                    21*(t+1)

Составляем первое уравнение: vt=21(t+1)

До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
                Скорость (км/ч)       Время (ч)            Расстояние (км)
третий           v                                t+9                 v*(t+9)    
второй          24                              t+11              24*(t+11)
Составляем второе уравнение:  v(t+9)=24(t+11)

Решаем систему уравнений:
{ vt=21(t+1)   =>   v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)

 frac{21(t+1)(t+9)}{t}=24(t+11)|*t \\21(t+1)(t+9)=24t^2+264t\21(t^2+10t+9)=24t^2+264t\21t^2+210t+189=24t^2+264t\3t^2+54t-189=0|:3\t^2+18y-63=0\D=18^2-4*1*(-63)=576=24^2\t_1=(-18-24)/2=-42/2=-21<0\t_2=(-18+24)/2=6/2=3

Итак, t=3 часа 
Находим скорость третьего велосипедиста:
v= frac{21(t+1)}{t}= frac{21(3+1)}{3}=7*4=28  (км/ч)

Ответ: 28 км/ч

Похожие вопросы
Предмет: Физика, автор: irinka09026