Предмет: Геометрия, автор: Аноним

  ДАЮ  70 БАЛЛОВ , РЕШИТЕ ПОЖАЛУЙСТА ----- внутри параллелограмма АВСД отметили точку М. Докажите, что разность площадей треугольников ABM и ВСМ равна разности площадей треугольников ADM u CDM.

Ответы

Автор ответа: kleptik
0
1) Если M - точка пересечения диагоналей параллелограмма, задача решена.
2) Точка M выбирается произвольно.
Равенство,которое нужно доказать - S(ABM)-S(BMC)=S(ADM)-S(CMD) - перепишем 
в виде: S(ABM)+S(CMD)=S(ADM)+S(BMC).
Рассмотрим пару треугольников AMD и BMC. Пусть MK и MH их высоты соответственно,причем точки M,K и H лежат на одной прямой (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй).Тогда площади данных треугольников равны соответственно 1/2AD*MK и 
1/2BC*MH, а их сумма (так как AD=BC) - 1/2BC(MK+MH)=1/2BC*HK (так как MH+MK=HK), что равно половине площади параллелограмма!
Следовательно, другая половина приходится на вторую пару треугольников,
требуемое утверждение доказано.
Похожие вопросы
Предмет: Биология, автор: glzirauldasbaj
Предмет: Химия, автор: sasukee91