Предмет: Алгебра,
автор: shyngysshokan2008
4sin²x+8sinx=8√3sin60°
на [-2π;π]
Ответы
Автор ответа:
1
Ответ:
Давайте решим уравнение \(4\sin^2x + 8\sin x = 8\sqrt{3}\sin 60^\circ\) на интервале \([-2\pi; \pi]\).
1. Разделим обе стороны на 4: \(\sin^2x + 2\sin x = 2\sqrt{3}\sin 60^\circ\).
2. Заметим, что \(\sin 60^\circ = \frac{\sqrt{3}}{2}\).
3. Подставим это значение: \(\sin^2x + 2\sin x = 2\sqrt{3} \cdot \frac{\sqrt{3}}{2}\).
4. Упростим: \(\sin^2x + 2\sin x - 3 = 0\).
Теперь это квадратное уравнение. Решим его с помощью дискриминанта.
Объяснение:
надеюсь правильно если не правильно то напишите
tarasabc:
не до кінця, або чат gpt перервався під час дачі відповіді, він це часто робить, або тобі лєнь доробляти було)
Автор ответа:
0
Відповідь:
Пояснення:
нехай sinx=а
Так як синус не може бути -3, то підходить тільки один корінь
- це загальний розв'язок цього рівняння, а тепер знайдемо розв'язки на [-2π;π]
Похожие вопросы
Предмет: Математика,
автор: kristina0809m
Предмет: Биология,
автор: dannyaach
Предмет: Английский язык,
автор: mihaylhalin1
Предмет: История,
автор: nikitatemla