Предмет: Алгебра, автор: undecidethe

построить график функции f(x)=(x-1)^3 и указать ее основные свойства

Ответы

Автор ответа: MrFarMauT
0

Ответ:

Для построения графика функции f(x) = (x-1)^3, нам необходимо применить несколько шагов.

1. Исследуем область определения функции. В данном случае, функция f(x) определена для любого значения x.

2. Найдем точки пересечения с осями координат. Для этого приравняем f(x) к 0 и решим уравнение:

(x-1)^3 = 0

Решением этого уравнения является x = 1. Таким образом, у функции есть единственная точка пересечения с осью x, а именно (1, 0).

3. Исследуем поведение функции в окрестности точки пересечения. Для этого найдем производную функции f(x):

f'(x) = 3(x-1)^2

Равенство производной нулю дает нам единственную критическую точку при x = 1. При этом, производная меняет знак на промежутках (-∞,1) и (1,+∞), что говорит о том, что график функции будет возрастать на промежутке (-∞,1) и убывать на промежутке (1,+∞).

4. Определим поведение функции на бесконечности. При x -> -∞, (x-1)^3 будет стремиться к -∞. При x -> +∞, (x-1)^3 будет стремиться к +∞.

5. Для построения графика выберем несколько значений x и найдем соответствующие значения y = f(x). Например:

При x = -2, y = (-2-1)^3 = -27

При x = 0, y = (0-1)^3 = -1

При x = 1, y = (1-1)^3 = 0

При x = 2, y = (2-1)^3 = 1

При x = 3, y = (3-1)^3 = 8

6. Нанесем найденные точки на координатную плоскость и прочертим график, проходящий через них. При этом учтем, что функция будет возрастать на интервале (-∞,1) и убывать на интервале (1,+∞). Таким образом, график будет иметь форму параболы с ветвями, направленными вверх.

В результате, график функции f(x) = (x-1)^3 будет иметь вид параболы с вершиной в точке (1, 0) и ветвями, направленными вверх. Он будет возрастать на интервале (-∞,1) и убывать на интервале (1,+∞).

Похожие вопросы
Предмет: Русский язык, автор: bogdanovauser112239
Предмет: Английский язык, автор: mayaandreeva5