Предмет: Геометрия,
автор: annaditkun588
Через вершину А ромба АВСД проведено перпендикуляр SА до площини ромба. Знайдіть відстань між прямими SA i ДС, якщо AB =2 см, АДC=60°.
Ответы
Автор ответа:
1
Ответ:
В ромбе \(ABCD\), перпендикуляр проведений через вершину \(A\) (означимо його \(SA\)) ідет через середину сторони \(CD\), оскільки в ромбі діагоналі ділять кожний однаково.
Таким чином, \(SA\) ділить \(DC\) на дві рівні частини. Позначимо половину \(DC\) через \(x\).
Знаючи, що \(AB = 2 \, \text{см}\) і \(\angle ADC = 60^\circ\), ми можемо використовувати трикутник \(ADC\) для знаходження \(x\).
\[ \cos 60^\circ = \frac{x}{2} \]
\[ x = 2 \cdot \cos 60^\circ \]
Знайдемо значення \(x\), а потім визначимо відстань між прямими \(SA\) і \(DC\), яка дорівнює \(2x\).
\[ x = 2 \cdot \cos 60^\circ = 2 \cdot \frac{1}{2} = 1 \, \text{см} \]
Отже, відстань між прямими \(SA\) і \(DC\) дорівнює \(2x = 2 \, \text{см}\).
annaditkun588:
а малюнок
Похожие вопросы
Предмет: География,
автор: babenkosof88
Предмет: История,
автор: a88317420
Предмет: Другие предметы,
автор: shomurodovfuruzon1
Предмет: Русский язык,
автор: Аноним
Предмет: Другие предметы,
автор: Аноним