Предмет: Геометрия, автор: lilit15

на каждой из двух окружностей с радиусами 5 и 12 лежат по три вершины ромба. найдите его сторону РЕШИТЕ ПОЖАЛУЙСТА . МНЕ ОЧЕНЬ НУЖНО ! ЗАРАНЕЕ СПАСИБО !!!!!

Ответы

Автор ответа: Fatter
0

Обозначим ромб АВСД, АС-большая диагональ, ВД-меньшая. О-точка пересечения диагоналей ромба. По условию окружность радиусом=5 описана вокруг треугольника АВД, а окружность радиусом =12 -вокруг треугольника АВС. Эти треугольники равнобедренные поскольку АВСД-ромб. Радиус описанной около равнобедренного треугольника окружности равен R=а квадрат/корень из(4а квадрат-d квадрат). Где а -сторона ромба, d-меньшая диагональ. Причём в знаменателе выражение большей диагонали ромба. То есть R=а квадрат/D. Это известные формулы. Отсюда 5=а квадрат/D и 12=а квадрат/d. Тогда тангенс угла ВАО=d/D=5/12. Это угол 22 градуса 37мин. Тогда угол АВО=67гр.23мин. Угол АВС вдвое больше , то есть 134гр.46мин. Он вписанный, значит опирается на дугу вдвое большую в градусном измерении 269гр. 32мин. То есть в окружности радиусом R=12, имеем хорду АС стягивающую известную дугу. Тогда АС=L=2R*sin(Ф/2)=2*12*sin134гр.46мин.=17,04. Тогда искомая сторона АВ=АО/cosbao=(AC/2)/cos22гр. 37мин.=8,52/0,92=9,26.

Похожие вопросы