Предмет: Алгебра, автор: fctdgsygfdhngfxzgsac

Знайти границі послідовностей.

Приложения:

Ответы

Автор ответа: 7x8
1

Ответ:

\displaystyle 4)\ 0

\displaystyle 9)\ 0

Объяснение:

\displaystyle 4)\\\\ \lim_{x\to\infty}\frac{2-x^2}{x^3+2x+3}=\lim_{x\to\infty}\frac{\frac{2}{x^3}-\frac{x^2}{x^3}}{\frac{x^3}{x^3}+\frac{2x}{x^3}+\frac{3}{x^3}}=\lim_{x\to\infty}\frac{\frac{2}{x^3}-\frac{1}{x}}{1+\frac{2}{x^2}+\frac{3}{x^3}}=\frac{0}{1}=0

\displaystyle 9)\\\\ \lim_{x\to 2}\frac{x^2-4x+4}{8x^3+4x^2-4x-74}=\frac{2^2-4\cdot 2+4}{8\cdot 2^3+4\cdot 2^2-4\cdot 2-74}=\\\\\\\frac{4-8+4}{8\cdot 8+4\cdot 4-8-74}=0

Похожие вопросы
Предмет: Алгебра, автор: parhinsaha05