Предмет: Геометрия, автор: nm5326659

Помогите задаче по геометрии

Найдите среднюю линию трапеции

Bc=4 см cd=12см <А=45⁰ а

Ответы

Автор ответа: jovanajoruno227
0

Ответ:

Объяснение:

Средняя линия трапеции - это линия, соединяющая середины её параллельных сторон. В данной задаче у нас есть трапеция ABCD, где BC и AD - параллельные стороны.

Сначала найдем середину стороны BC. Для этого нужно разделить сторону BC пополам. BC равна 4 см, поэтому середина стороны BC будет находиться на расстоянии половины этой длины, то есть 2 см от вершины B. Обозначим точку середины как M.

Тепер найдем середину стороны AD. Строим перпендикуляр к AD в точке C и обозначаем его пересечение с AD как N. Поскольку угол ACD равен 45 градусов, то угол ACN также будет равен 45 градусов. Тепер мы имеем прямоугольный треугольник ACN, и мы можем использовать тригонометрию для вычисления длины NC.

AC = CD = 12 см (по условию).

Угол ACN = 45 градусов.

Используя тригонометрию, мы можем вычислить NC:

tan(45 градусов) = NC / AC,

1 = NC / 12.

Отсюда NC = 12 см.

Тепер мы знаем, что NC = 12 см, и точку M (середина BC) на расстоянии 2 см от вершины B. Соединяем точки M и N, и получаем среднюю линию трапеции.

Средняя линия трапеции MN будет иметь длину равную среднему арифметическому от NC и 2 см:

MN = (NC + 2 см) / 2 = (12 см + 2 см) / 2 = 7 см.

Таким образом, средняя линия трапеции ABCD равна 7 см.

Похожие вопросы
Предмет: Алгебра, автор: Sixpi
Предмет: Математика, автор: figugijgjgu