Предмет: Алгебра, автор: areimer173

Найдите наибольшее и наименьшее значение функции: у = х2 + 5,4, где - 3 < x < - 2;
У = √x + 4, где 0<х <4

Ответы

Автор ответа: vasalatijroma
1

Ответ:Для знаходження найбільшого і найменшого значення функцій у = х² + 5,4 та у = √x + 4 на заданих інтервалах, спершу розглянемо кожну функцію окремо.

1. Функція у = х² + 5,4, де -3 < x < -2:

На цьому інтервалі функція є квадратичною функцією, і ми можемо визначити її найменше і найбільше значення, знаходячи вершину параболи.

Формула вершини параболи:

x_вершини = -b / (2a),

y_вершини = -D / (4a),

де у = ax² + bx + c, а D - дискримінант.

В нашому випадку a = 1, b = 0, c = 5,4. Підставимо ці значення в формули:

x_вершини = -0 / (2 * 1) = 0,

y_вершини = -D / (4 * 1) = -5,4 / 4 = -1,35.

Таким чином, вершина параболи розташована у точці (0, -1,35).

Зауважте, що ця вершина знаходиться між x = -3 та x = -2, що відповідає заданому інтервалу -3 < x < -2.

Отже, найбільше значення функції y = x² + 5,4 на інтервалі -3 < x < -2 дорівнює -1,35 (в точці вершини параболи), а найменше значення також -1,35 (оскільки це мінімум параболи).

2. Функція y = √x + 4, де 0 < x < 4:

Ця функція є кореневою функцією. Для знаходження її найбільшого і найменшого значення на заданому інтервалі, ми визначимо значення функції на кінцях інтервалу та в точці максимального значення.

- При x = 0:

 y = √0 + 4 = 4.

- При x = 4:

 y = √4 + 4 = 2 + 4 = 6.

- Щоб знайти точку максимального значення, де похідна дорівнює нулю, візьмемо похідну функції:

 y' = (1/2) * x^(-1/2).

 Похідна дорівнює нулю, коли x^(-1/2) = 0, що неможливо на дійсних числах.

Таким чином, функція y = √x + 4 не має точки максимального значення на інтервалі 0 < x < 4.

Отже, на інтервалі 0 < x < 4 найбільше значення функції y = √x + 4 дорівнює 6 (при x = 4), а найменше значення дорівнює 4 (при x = 0).

Объяснение:Отже, на інтервалі 0 < x < 4 найбільше значення функції y = √x + 4 дорівнює 6 (при x = 4), а найменше значення дорівнює 4 (при x = 0).

Похожие вопросы
Предмет: Математика, автор: katarinka20121
Предмет: Алгебра, автор: catl74204
Предмет: Математика, автор: natashasoktina