Предмет: Физика, автор: hikkipetrov

Дві ракети стартують одночасно з однієї точки поверхні Землі з початковими швидкостями, які дорівнюють нулю Прискорення ракет a1=2t, a2+5t напрямлені вертикально вверх
Знайти відстань між ракетами через 2 с.

Ответы

Автор ответа: natashazabidilina
1

Ответ:

Для того, щоб знайти відстань між ракетами через 2 секунди, ми можемо використати формулу руху зі змінним прискоренням:

S = ut + (1/2)at^2,

де S - пройдена відстань, u - початкова швидкість, a - прискорення, t - час.

Для першої ракети, початкова швидкість u1 = 0, прискорення a1 = 2t, тому ми можемо записати формулу для першої ракети:

S1 = 0*t + (1/2)*(2t)*t^2 = t^3.

Для другої ракети, початкова швидкість u2 = 0, прискорення a2 = 5t, тому ми можемо записати формулу для другої ракети:

S2 = 0*t + (1/2)*(5t)*t^2 = (5/2)*t^3.

Відстань між ракетами через 2 секунди буде різницею пройдених відстаней:

S = | S1 - S2 | = | t^3 - (5/2)*t^3 | = | (1 - (5/2))*t^3 | = | (2/2 - 5/2)*t^3 | = | (-3/2)*t^3 | = (3/2)*t^3.

Підставивши t = 2, ми отримаємо:

S = (3/2)*(2^3) = (3/2)*8 = 12.

Отже, відстань між ракетами через 2 секунди становить 12 одиниць виміру.

Похожие вопросы