Как выглядит формула для определения вероятности отклонения относительной частоты наступления события от вероятности его появления в одном(!) опыте не более чем на заданную величину? (Через функцию Лапласа)
Ответы
Ответ:
Пошаговое объяснение:
Для определения вероятности отклонения относительной частоты наступления события от вероятности его появления в одном опыте на заданную величину можно использовать функцию Лапласа.
Пусть p - вероятность наступления события в одном опыте, а q = 1 - p - вероятность его не наступления.
Для большого числа независимых опытов (например, n опытов) вероятность того, что событие наступит k раз, можно вычислить с помощью биномиального распределения:
P(X = k) = C(n, k) * p^k * q^(n-k),
где C(n, k) - число сочетаний из n по k.
Теперь, для определения вероятности того, что относительная частота наступления события отклонится от p не более чем на заданную величину (ε), мы можем использовать неравенство Чебышёва.
Формула неравенства Чебышёва для отклонения относительной частоты:
P(|X/n - p| ≤ ε) ≥ 1 - (p * q * n) / (n * ε^2).
Где X - количество раз, когда событие наступило в n опытах.
Это неравенство позволяет оценить вероятность того, что отклонение относительной частоты от p не превысит заданной величины ε.
Пожалуйста, обратите внимание, что вероятность отклонения может быть только оценена с помощью неравенства Чебышёва, и для точного определения вероятности необходимо знать распределение случайной величины.