Предмет: Алгебра, автор: abdyldabekovusman373

Имеется проволока 16 м , требуется оградить проволокой прямоугольный участок земли,что бы площадь ограженного участка была наибольшей, найти участок прямоугольника

Ответы

Автор ответа: natalyabryukhova
1

Ответ:

Наибольшая площадь участка 16 м² (квадрат).

Объяснение:

Имеется проволока 16 м , требуется оградить проволокой прямоугольный участок земли, чтобы площадь огороженного участка была наибольшей. Найти площадь участка.

Имеется проволока 16 м...

Р = 16 м

  • Формула периметра прямоугольника:

            Р = 2(a + b),

где a и b - стороны прямоугольника.

Пусть стороны прямоугольника - а и b.

16 = 2(a + b)   ⇒   a + b = 8   ⇒  b = 8 - a

  • Формула площади прямоугольника:

                 S = ab

Подставим b = 8 - a в эту формулу и получим функцию S(a):

S(a) = a · (8 - a) = 8a - a²

Найдем значение а, при котором значение функции будет максимальным.

Найдем производную, приравняем к нулю и найдем корни.

S'(a) = 8 - 2a = 2(4 - a)

2(4 - a) = 0   ⇒   a = 4

Отметим их на числовой оси и определим знаки производной на промежутках.

+++[4]---\\_\;\;\;\;\;\;\;\;\;\;\;max

  • Если производная меняет знак с плюса на минус, то в данной точке наблюдается максимум.

⇒ при а = 4 значение площадь участка будет максимальной.

S(4) = 8 · 4 - 16 = 16(м²)

Наибольшая площадь участка 16 м² (квадрат).

#SPJ1

Похожие вопросы
Предмет: Биология, автор: Аноним
Предмет: Алгебра, автор: calvinkleinn