Знайти кути чотирикутника MFBD, якщо кут М дорівнює куту Ғ, кут D більший за кут М на 75° , а кут В менший за кут F на 35°
напишіиь що дано і розв'язок з малюнком
Ответы
З даного завдання ми знаємо:
Кут М = Кут Ғ
Кут D = Кут М + 75°
Кут В = Кут Ғ - 35°
Ми можемо позначити кути так:
М = Кут М
Ғ = Кут Ғ
D = Кут D
В = Кут В
За умовою, М = Ғ. Отже, ми можемо позначити їх як М = Ғ = x (де x - деяке значення кута).
Тоді залишаючіся кути можна виразити як:
D = М + 75° = x + 75°
В = Ғ - 35° = x - 35°
Оскільки сума кутів в чотирикутнику дорівнює 360°, ми можемо записати рівняння:
М + Ғ + D + В = 360°
Підставимо значення кутів, які ми виразили раніше, у це рівняння:
x + x + (x + 75°) + (x - 35°) = 360°
Об'єднавши подібні терміни, отримаємо:
4x + 40° = 360°
Віднімаємо 40° від обох боків:
4x = 320°
Ділимо на 4:
x = 80°
Тепер, ми можемо знайти значення кожного кута:
М = Ғ = x = 80°
D = x + 75° = 80° + 75° = 155°
В = Ғ - 35° = x - 35° = 80° - 35° = 45°
Отже, значення кутів чотирикутника MFBD будуть:
М = Ғ = 80°
D = 155°
В = 45°
Малюнок чотирикутника MFBD:
M
/\
/ \
D /____\ В
F
Надіюся, що це зрозумно! Якщо у вас є ще які-небудь питання, будь ласка, дайте мені знати.