Предмет: Геометрия,
автор: vkronikabodenko
4. Центральный угол окружности длиной 32п см равен 135°. Найдите: длину дуги, на которую опирается этот угол; б) площадь сектора, ограниченного этой дугой. (5 б)
Приложения:
![](https://files.topotvet.com/i/f79/f79a374afaeb47e9f5acb3267cd8cd48.jpg)
Ответы
Автор ответа:
1
Ответ:Центральный угол окружности равен 135°, а длина окружности равна 32π см. Длина дуги, на которую опирается этот угол, равна (135/360) * 32π = 12π см.
Площадь сектора, ограниченного этой дугой, можно найти по формуле: S = (α/360) * πr², где α - это центральный угол в градусах, а r - это радиус окружности. Радиус можно найти из формулы длины окружности: C = 2πr. Таким образом, r = C/(2π) = 32π/(2π) = 16 см. Подставив эти значения в формулу для площади сектора, получим: S = (135/360) * π * 16² = 108π см².
Объяснение:
Похожие вопросы
Предмет: Русский язык,
автор: qurbaneliyevm3
Предмет: История,
автор: valeriazenkevic
Предмет: Литература,
автор: Katya751410
Предмет: Русский язык,
автор: livi25
Предмет: Геометрия,
автор: amastasiadm