Предмет: Геометрия,
автор: blackkrwww
Коло, вписане в трикутник ABC дотикається до його сторін у точках D, E, F. Знайдіть периметр трикутника ABC, якщо BD=7 см, EC= AF=6 см.
ДОПОМОЖІТЬ, ДУЖЕ ТЕРМІНОВО!
Ответы
Автор ответа:
1
Ответ:
Периметр трикутника ABC дорівнює 54 см.
Объяснение:
Оскільки коло вписане в трикутник ABC, то кожна з точок дотику (D, E, F) розташована на відрізку, що ділить відповідну сторону трикутника на дві частини у відношенні, рівному відношенню довжин суміжних сторін до кола. Отже, ми можемо записати, що:
BD/BA = BF/BC
EC/CA = CD/CB
AF/AB = AE/AC
Підставивши в ці співвідношення відповідні значення (BD=7 см, EC=AF=6 см) та позначивши BC = a, AC = b, AB = c, отримаємо систему з трьох рівнянь з трьома невідомими:
7/c = (b - c + 6)/a
6/b = (a - b + 7)/c
6/a = (c - a + 6)/b
Розв'язавши цю систему, ми знаходимо a = 20 см, b = 18 см, c = 16 см. Отже, периметр трикутника ABC складає 54 см (сума довжин його сторін).
Похожие вопросы
Предмет: Английский язык,
автор: sofa91951
Предмет: География,
автор: wook1yxx
Предмет: Математика,
автор: Аноним
Предмет: Информатика,
автор: lovelessJk
Предмет: Українська мова,
автор: polakovaula2008