Предмет: Физика, автор: DARK200805

При скорости 72 км/ч водитель выключает двигатель и на- чинает тормозить на горизонтальном участке дороги с коэффици ентом трения 0,2. Определите время, за которое остановится авто- мобиль, его ускорение и тормозной путь

Ответы

Автор ответа: lurgee2812
1

Объяснение:

Для решения задачи используем законы движения Ньютона:

1) F = ma (спеременной массой)

2) F = μN (с постоянной массой)

где F - сила трения, a - ускорение, μ - коэффиперемещением)

2) F = μN, где μ - коэффициент трения, N - нормальная сила, перпендикулярная к поверхности дороги.

Первый закон можно записать в виде:

v^2 = u^2 + 2as,

где v - скорость автомобиля в конечный момент времени (равна 0, так как автомобиль остановился), u - начальная скорость (72 км/ч = 20 м/с), a - ускорение торможения, s - тормозной путь.

Из второго закона следует:

F = μmg,

где m - масса автомобиля, g - ускорение свободного падения (9,81 м/с^2).

Так как на автомобиль действует только сила трения:

F = ma = μmg,

откуда

a = μg = 0,2 * 9,81 = 1,962 м/с^2.

Тогда можно найти тормозной путь:

s = (v^2 - u^2) / (2a) = (0 - 400) / (2 * (-1,962)) = 102,03 м.

Наконец, время торможения можно найти как:

t = s / u = 102,03 / 20 = 5,1 с.

Таким образом, время торможения равно 5,1 с, ускорение торможения -1,962 м/с^2, а тормозной путь составляет 102,03 м.

Похожие вопросы
Предмет: Математика, автор: baranivskaelizaveta