Предмет: Математика, автор: Аноним

У прямокутному трикутнику MNF (кут M -прямий) на гіпотенузі взяли точку K так,що NK =KM.Доведіть,що NK=KV

Ответы

Автор ответа: hardlike
1

Ответ:

Пошаговое объяснение:

Для доведення того, що NK=KV, побудуємо перпендикуляр KV до гіпотенузи MN. Оскільки в прямокутному трикутнику протилежні кути співпадають, то кут MKN дорівнює куту FMK, а кут KNM дорівнює куту KFN. Звідси випливає, що трикутники MKN і KFN є подібними за двома кутами.

Отже, маємо наступну відповідність сторін:

KN : KF = KM : FN

Оскільки в трикутнику MNF виконується теорема Піфагора: MF^2 = MN^2 + NF^2, то маємо:

KF^2 = MF^2 - KM^2 = MN^2 + NF^2 - KM^2

Оскільки NK = KM, то можемо замінити KM на NK, отримаємо:

KF^2 = MN^2 + NF^2 - NK^2

Аналогічно, для трикутника KVN можна записати:

KV^2 = VN^2 + NF^2

Оскільки виконується умова NK = KM, то сторона MNF ділить гіпотенузу на дві рівні частини. Отже, сторона NF ділить сторону KF на дві рівні частини, тобто KF = 2NF. Підставляємо це в попередні рівняння:

KF^2 = 4NF^2 = 3NF^2 + NF^2 = 3(NF^2 + MN^2/4) + NF^2/4 - NK^2

Таким чином, маємо:

KF^2 - KV^2 = 3(NF^2 + MN^2/4) + NF^2/4 - NK^2 - (VN^2 + NF^2)

Але за теоремою Піфагора в трикутнику NVF виконується:

VN^2 + NF^2 = VF^2

Тоді попереднє рівняння можна переписати у вигляді:

KF^2 - KV^2 = 3(NF^2 + MN^2/4) + NF^2/4 - NK^2 - VF^2

Похожие вопросы
Предмет: Алгебра, автор: bisingalievatmir