Диагональ боковой грани правильной шестиугольной призмы равна
большей диагонали основания. Под каким углом пересекаются
диагонали боковой грани этой призмы?
Ответы
Ответ:
Знайдемо відношення довжин бічних граней до довжин основи призми.
Оскільки діагональ бічної грані дорівнює більшій діагоналі основи, то це означає, що протилежні сторони шестикутника, який утворює основу призми, повинні бути паралельні.
Знайдемо відношення діагоналі бічної грані до бічного ребра.
Якщо ми наріжемо бічну грань на дві грані, що мають форму трапеції, то ми зможемо побачити, що діагоналі цих трапецій є сторонами прямокутного трикутника, а бічне ребро призми є його гіпотенузою.
Тому, згідно з теоремою Піфагора, діагональ бічної грані буде дорівнювати квадратному кореню з суми квадратів довжин бічного ребра і половини діагоналі основи.
Діагональ бічної грані / Бічне ребро = √(1/4 + 1) = √(5/4) = √5/2
Знайдемо кут між діагоналями бічної грані.
Оскільки діагоналі бічної грані перетинаються у точці, яка є серединою бічного ребра, то вони утворюють перпендикулярний кут. Таким чином, кут між діагоналями бічної грані буде дорівнювати 90 градусів.
Отже, діагоналі бічної грані перетинаються під прямим кутом (90 градусів).