Предмет: Геометрия,
автор: ygrik1106
В рівнобічну трапецію вписане коло Радіус якого дорівнює 8 см. Знайдіть OCHO Bu трапеції, якщо їх різниця дорівнює 24 см.
Надо её решить по теории Пифагора даю 80 балов
Ответы
Автор ответа:
2
Ответ:
32 та 8
Объяснение:
Позначимо основи трапеції як $a$ та $b$, при цьому $a > b$. Також позначимо висоту трапеції як $h$.
Оскільки трапеція рівнобічна, то її бічні сторони є рівними, тобто $h = 8$ см.
Оскільки вписане коло є внутрішнім для трапеції, то радіус кола дорівнює половині суми паралельних сторін трапеції, тобто:
$$8 = \frac{a+b}{2}$$
Також за умовою задачі $a-b=24$. Розв'язуючи цю систему рівнянь, знаходимо:
$$a = 32, \quad b = 8$$
Отже, основи трапеції дорівнюють 32 см та 8 см.
Похожие вопросы
Предмет: Математика,
автор: Makes1090
Предмет: Математика,
автор: mariapancenkova875
Предмет: Физика,
автор: eaveranov98
Предмет: Физика,
автор: vladimirova270