Предмет: Геометрия,
автор: lizavetals
В правильной шестиугольной призме A...F1, все ребра которой равны 1, найдите угол между прямыми AB1 и CD1
Ответы
Автор ответа:
0
сделаем построение по условию
найдите угол между прямыми AB1 и CD1
РЕШЕНИЕ
Углы между прямой AB1 и любой прямой параллельной прямой CD1 будут равны.
Грани CDD1A1 и AFF1A1 параллельны и являются квадратами. CD1 и AF1 диагонали
этих граней, которые лежат в плоскости ACD1F1.
Сделаем параллельный перенос CD1 в AF1 и найдем угол <B1AF1 равный искомому углу.
AB1 = AF1 - диагонали квадратов. По формуле Пифагора
AB1 = AF1 = √ 1² + 1² = √2
В правильном шестиугольнике A1B1C1D1E1F1 все углы 120 град, тогда
в треугольнике B1A1F1 <B1A1F1 = 120
По теореме косинусов
B1F1² = DB1² + DF1² - 2*DB1*DF1*cos120
все ребра равны 1
B1F1² = 1² + 1² - 2*1*1*cos120 = 3
По теореме косинусов
B1F1² = AB1² + AF1² - 2*AB1*AF1*cos<B1AF1
cos<B1AF1 = (AB1² + AF1² - B1F1²) / (2*AB1*AF1)
cos<B1AF1 = (√2² + √2² - 3) / (2*1*1) = 1/2 = cos 60
<B1AF1 = 60 град (или п/3)
ответ
60 град (или п/3)
найдите угол между прямыми AB1 и CD1
РЕШЕНИЕ
Углы между прямой AB1 и любой прямой параллельной прямой CD1 будут равны.
Грани CDD1A1 и AFF1A1 параллельны и являются квадратами. CD1 и AF1 диагонали
этих граней, которые лежат в плоскости ACD1F1.
Сделаем параллельный перенос CD1 в AF1 и найдем угол <B1AF1 равный искомому углу.
AB1 = AF1 - диагонали квадратов. По формуле Пифагора
AB1 = AF1 = √ 1² + 1² = √2
В правильном шестиугольнике A1B1C1D1E1F1 все углы 120 град, тогда
в треугольнике B1A1F1 <B1A1F1 = 120
По теореме косинусов
B1F1² = DB1² + DF1² - 2*DB1*DF1*cos120
все ребра равны 1
B1F1² = 1² + 1² - 2*1*1*cos120 = 3
По теореме косинусов
B1F1² = AB1² + AF1² - 2*AB1*AF1*cos<B1AF1
cos<B1AF1 = (AB1² + AF1² - B1F1²) / (2*AB1*AF1)
cos<B1AF1 = (√2² + √2² - 3) / (2*1*1) = 1/2 = cos 60
<B1AF1 = 60 град (или п/3)
ответ
60 град (или п/3)
Приложения:
Похожие вопросы
Предмет: Литература,
автор: TeRLoN666
Предмет: Физика,
автор: obidovalolahon
Предмет: Музыка,
автор: dportnova09
Предмет: Химия,
автор: Murad313
Предмет: Биология,
автор: Dyllan