Предмет: Алгебра,
автор: svetataran814
решить систему уравнений {3х^2y^2 +x^2 - 3хy = 7 и 10х^2y^2 +3x^2 - 20хy = 3
Ответы
Автор ответа:
1
Відповідь:
The given system of equations can be solved using substitution.
First, isolate the x terms in the first equation by subtracting 3xy from both sides:
3x^2y^2 + x^2 - 3xy = 7 - 3xy x^2(3y^2 + 1) - 3xy = 7 - 3xy x^2 = (7 - 3xy) / (3y^2 + 1)
Next, substitute this expression for x^2 in the second equation:
10x^2y^2 + 3x^2 - 20xy = 3 10x^2y^2 + (7 - 3xy) / (3y^2 + 1) - 20xy = 3
Finally, solve for y:
10y^2(7 - 3xy) + 3(7 - 3xy) - 20xy = 3(3y^2 + 1) 70y^2 - 30xy^2 - 21 + 9xy = 9y^2 + 3 61y^2 - 30xy^2 + 9xy = 3 y^2(61 - 30x) + xy(9 - 30) = 3 y = (3 - xy(9 - 30)) / (61 - 30x)
Пояснення:
Похожие вопросы
Предмет: Математика,
автор: katesk1120
Предмет: Геометрия,
автор: mirasbulatt
Предмет: Немецкий язык,
автор: rozatina23
Предмет: Алгебра,
автор: albinaakubova71
Предмет: Литература,
автор: kimmaxim1306