Предмет: Математика,
автор: akmereey
треугольники АВС и ХУZ подобны известно что АВ=3 см ВС=8 си УZ =12 см площадь треугольника АВС =10 найлите площадь треугольрика ХУZ
Ответы
Автор ответа:
0
Відповідь:Сначала надо найти АС и В1С1. Есть признак подобия по двум катетам, если они соотносятся одинаково, значит, подобны. Сначала найдем С1В1, так как в нем А1С1 равен 3 (катет) а А1В1 (гипотенуза) равна 5, то оставшийся катет С1В1 равен 4 (египетский треугольник).
Теперь рассмотрим треугольник АВС, найдем АС:
по теореме Пифагора:
АС=√(АВ²-СВ²)
АС=√(10²-8²)=√(100-64)=√36=6
Теперь, если отношение катетов АС/А1С1 равно СВ/С1В1, то они подобны. Проверяем:
АС/А1С1=6/3=2
СВ/С1В1=8/4=2
Так как в обоих случаях отношения одинаковы и равны 2, то треугольники подобны (по катетам)
Покрокове пояснення:
нема
Похожие вопросы
Предмет: Английский язык,
автор: danalajcenko
Предмет: Информатика,
автор: vmihalcuk934
Предмет: Литература,
автор: andrijkisel644
Предмет: Русский язык,
автор: effiiieee
Предмет: Геометрия,
автор: Fantastic1987987