Предмет: Алгебра, автор: eleonaise

Демо задание 1-3
Номер 6

Приложения:

Ответы

Автор ответа: NNNLLL54
1

Ответ:

z=x^2+y^2-xy-x-y\\\\z'_{x}=2x-y-1=0\ \ ,\ \ \ z'_{y}=2y-x-1=0\\\\\left\{\begin{array}{l}2x-y=1\ |\cdot 2\\2y-x=1\end{array}\right\ \oplus \ \left\{\begin{array}{l}y=1-2x\\3x=3\end{array}\right\ \ \left\{\begin{array}{l}y=1\\x=1\end{array}\right\ \ \ M(\, 1\, ;\, 1\, )

Точка М(1;1) - стационарная точка .

z''_{xx}=2\ \ ,\ \ z''_{xy}=-1\ \ ,\ \ z''_{yy}=2\\\\A=z''_{xx}\Big|_{M}=2\ \ ,\ \ B=z''_{xн}\Big|_{M}=-1\ \ ,\ \ C=z''_{yy}\Big|_{M}=2\\\\\Delta =AC-B^2=2\cdot 2-(-1)^2=4-1=3 > 0

Так как   \Delta > 0  , то имеем в точке М(1;1) экстремум . Причём, так как  А=2>0 , то это минимум .

Похожие вопросы
Предмет: Русский язык, автор: Данабол
Предмет: Қазақ тiлi, автор: спудик1