Предмет: Геометрия,
автор: dianahusejnogly438
Даю 20 балов
Найдите сторону треугольника с площадью 7✓3см² и углом 60⁰, если стопоры, прилежащие к данному углу, относятся 4:7
Ответы
Автор ответа:
1
Ответ:
4см;7см; √37см
Решение:
Пусть одна сторона будет 4х, а другая 7х.
S=½*a*b*sin∠(ab); а=4х; b=7x;
sin60°=√3/2
Уравнение:
½*4х*7х*√3/2=7√3
28x²√3=4*7√3
28x²=28
x=1
4x=4*1=4см одна сторона треугольника
7х=7*1=7см вторая сторона треугольника.
_____
Теорема косинусов
с=√(а²+b²-2ab*cos∠(ab))=
=√(4²+7²-2*4*7*1/2)=√(16+49-28)=
=√37см третья сторона треугольника
4см;7см; √37см
Решение:
Пусть одна сторона будет 4х, а другая 7х.
S=½*a*b*sin∠(ab); а=4х; b=7x;
sin60°=√3/2
Уравнение:
½*4х*7х*√3/2=7√3
28x²√3=4*7√3
28x²=28
x=1
4x=4*1=4см одна сторона треугольника
7х=7*1=7см вторая сторона треугольника.
_____
Теорема косинусов
с=√(а²+b²-2ab*cos∠(ab))=
=√(4²+7²-2*4*7*1/2)=√(16+49-28)=
=√37см третья сторона треугольника
dianahusejnogly438:
спасибо вам большое
Похожие вопросы
Предмет: Русский язык,
автор: 1516171819
Предмет: Русский язык,
автор: rami240604
Предмет: Русский язык,
автор: сахакруче
Предмет: Алгебра,
автор: grizkovika15