Предмет: Алгебра,
автор: bayndina15
геометрическая прогрессия найдите Q и N если B1 равно 2 Bn равно 1024 Sn равно 2024
amanda2sempl:
Проверьте, у вас нет опечатки во фразе "Sn равно 2024"? По-моему, должно быть 2046
Ответы
Автор ответа:
0
Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
Ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
Похожие вопросы
Предмет: Русский язык,
автор: nikita1964
Предмет: Русский язык,
автор: larisayna0807
Предмет: Русский язык,
автор: classdevahaka
Предмет: Английский язык,
автор: редиска666