Предмет: Алгебра, автор: andreuantu

Решить пример
3у-4х=-6
5х-9у=-10

Ответы

Автор ответа: IZUBR
1

Ответ:

Решением данной системы является пара чисел: (4;\frac{10}{3}).

Объяснение:

Перед нами система уравнений с двумя неизвестными:

\left \{ {{3y-4x=-6} \atop {5x-9y=-10}} \right.

Данную систему уравнений проще решить, используя метод исключения одной переменной. Для этого домножим обе части первого уравнения на 3:

\left \{ {{3*(3y-4x)=-6*3} \atop {5x-9y=-10}} \right. \\\left \{ {{9y-12x=-18} \atop {5x-9y=-10}} \right.

Теперь, сложим оба уравнения данной системы, чтобы избавиться от переменной y. Найдем x, путем упрощения обычного уравнения:

(9y-12x)+(5x-9y)=-18+(-10)\\9y-12x+5x-9y=-28\\-12x+5x=-28\\-7x=-28\\x=4

Теперь подставим данное значение в первое уравнение системы, чтобы найти y:

3y-4*4=-6\\3y-16=-6\\3y=-6+16\\3y=10\\y=\frac{10}{3}=3\frac{1}{3}

Получили ответ, что решением данной системы является пара чисел: (4;\frac{10}{3})

Похожие вопросы
Предмет: Математика, автор: Miss20061