Предмет: Математика, автор: zarina9981

помогите решить дифференциальное уравнение
xydy−3dx=0

Ответы

Автор ответа: amanda2sempl
1

xydy – 3dx = 0 ⇒ xydy = 3dx ⇒ (разделяем переменные) ⇒ ydy = \frac{3dx}{x}

⇒ ∫ydy = ∫\frac{3dx}{x}\frac{y^{2} }{2} = 3ln|x| + C ⇒ F(x,y) = \frac{y^{2} }{2} – 3ln|x| + C = 0 – общий интеграл,

где С – числовая константа.


yugolovin: А откуда у Вас xdx? Там вроде бы просто dx
amanda2sempl: Верно, очередное нарушение, и его следует исправить. Надеюсь, модераторы увидят
yugolovin: Увидел)
Похожие вопросы
Предмет: Русский язык, автор: agagashimov1
Предмет: Українська мова, автор: Aniuta2810