Предмет: Математика, автор: vagif404475488

Хотелось бы получить решение понятное.

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

z =  ln(x +  {y}^{10} )

z'_x =  \frac{1}{x +  {y}^{10} }  \times (x +  {y}^{10} )'_x =  \\  =  \frac{1}{x +  {y}^{10} }  \times 1 =  \frac{1}{x +  {y}^{10} }

z'_y =  \frac{1}{ x+  {y}^{10} }  \times (x +  {y}^{10} )'_y =  \frac{10 {y}^{9} }{x +  {y}^{10} }  \\

\\z''_{xx} = (z'_x)'_x = ( \frac{1}{x +  {y}^{10} } )'_x = ( {(x +  {y}^{10}) }^{ - 1} )'_x =  \\  =  -  {(x +  {y}^{10}) }^{ - 2}  \times (x +  {y}^{10} )'_x =  -  \frac{1}{ {(x +  {y}^{10}) }^{2} }

\\z''_{yy} = (z'_y)'_y =  \frac{(10 {y}^{9})'(x +  {y}^{10} ) - (x +  {y}^{10})'_y \times 10 {y}^{9}   }{ {(x +  {y}^{10} )}^{2} }  =   \\ =  \frac{90 {y}^{8} (x +  {y}^{10}) - 10 {y}^{9} \times 10 {y}^{9}   }{ {(x +  {y}^{10} )}^{2} }  =  \frac{10 {y}^{8}(9x + 9 {y}^{10} - 10 {y}^{10} )  }{ {(x +  {y}^{10} )}^{2} }  =  \\  =  \frac{10 {y}^{8} (9x -  {y}^{10}) }{ {(x +  {y}^{10} )}^{2} }

\\z''_{xy} = z''_{yx} = ( \frac{1}{x +  {y}^{10} } )'_y = ( {(x +  {y}^{10}) }^{ - 1} )'_y =  \\  =  -  {(x +  {y}^{10}) }^{ - 2}  \times 10 {y}^{9}  =  -  \frac{10 {y}^{9} }{ {(x +  {y}^{10}) }^{2} }

Похожие вопросы